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INTRODUCTION

The term ‘abstract’ has its origins in the Latin ab (from) trahere (to drag) as:

• a verb: to abstract, (a process),
• an adjective: to be abstract, (a property),
• and a noun: an abstract, for instance, an image in painting (a concept).

The corresponding word ‘abstraction’ is dually a process of ‘drawing from’ a
situation and also the concept (the abstraction) output by that process. It has a multi-
modal meaning as process, property or concept. Piaget distinguished between
construction of meaning through empirical abstraction (focusing on objects and their
properties) and pseudo-empirical abstraction (focusing on actions on objects and the
properties of the actions). Later reflective abstraction occurs through mental actions
on mental concepts in which the mental operations themselves become new objects
of thought (Piaget, 1972, p. 70). In Tall et al, 2000, we reviewed ideas in the
literature and concluded that elementary mathematical thinking uses reflective
abstraction both by focusing on objects (for instance, in geometry) and on operations
on objects represented as symbols (in arithmetic, algebra, etc). In the latter case we
see symbols used dually as process and concept and have formulated this in terms of
the notion of procept (Gray & Tall, 1994, see also below). At a later stage, in
advanced mathematical thinking, the focus changes to properties (of objects and
operations) formulated as fundamental axioms for mathematical theories.

Our hypothesis is that different forms of abstraction lead to different type of
cognitive development and in turn, to differing cognitive problems. Empirical and
reflective abstraction in shape and space lead to a van Hiele type development that
we see as the growing dominance of verbal description over visual perception, as
language refines our imagery and leads to increasingly sophisticated forms of
mathematical structure and proof. Pseudo-empirical and reflective abstraction in
arithmetic, algebra and calculus naturally focus on our notion of procept. Increasing
focus on properties and deduction lead to a property-based axiomatic theory where
the process of proof leads to the concept of theorem which may then be used as steps
in building up a systematic formal theory.

We have a great empathy for the notion of different modes of operation as proposed
by Bruner (1966) and, more particularly, in the SOLO taxonomy of Biggs and
Collis. (1982). For instance, it is possible to build a holistic embodied mode that
relates to the enactive/iconic modes of Bruner or the sensori-motor/ikonic modes of
Biggs and Collis, before gaining an insight in proceptual (concrete-symbolic) terms;



or, at a later stage in advanced mathematical thinking, in formal-deductive terms.
Tall (1999) considers the distinct forms of proof available in these various modes as
the child develops cognitively into a mathematical expert. Tall (2002) reviews
calculus in terms of an enactive-iconic approach manipulating graphs, symbolic-
proceptual representations (manipulating formulae) and formal proof (in analysis).

In this short paper we do not have space to attend to our full theoretical perspective.
We focus only on the abstractive processes occurring in constructing procepts in
arithmetic, algebra and symbolic calculus and how differing types of symbol (whole
numbers, fractions, algebraic expressions, (infinite) decimals, limits) give rise to
distinct problems of concept construction and re-construction.

FIVE ASPECTS

The research forum is designed to focus on five aspects, given in (a)-(e) below.

a. What is the theory about?

Our theory grows as a result of our quest to understand not only what students do in
constructing symbolic mathematics, but how they do it. We believe that abstraction
is a natural consequence of human brain function. At any given time human
thinking occurs dynamically as a process, whereby items evoked in the focus of
attention are manipulated mentally as concepts. It is the duality of symbols in
arithmetic, algebra, etc as both process and concept that is the basis of our theory.

b. What assumptions are being made?

We assume that abstraction is a natural product of human mental activity, in which a
complex parallel-processing organ solves the problem of complexity by focusing on
essential structures that enable decisions to be made. Sometimes this process of
abstraction is a conscious reflective act, but much of it does, and must, occur
unconsciously to enable the brain to focus only on essential elements. There is
physical evidence that over time routinising tasks uses less brain capacity:

As a task to be learned is practiced, its performance becomes more and more automatic;
as this occurs, it fades from consciousness, the number of brain regions involved in the
task becomes smaller. (Edelman & Tononi, 2000, p.51)

There is also a compression in the nature of the symbolism being used:
I should also mention one other property of a symbolic system – its compactibility – a
property that permits condensations of the order F = MA or S = 12 gt2, …in each case the
grammar being quite ordinary, though the semantic squeeze is quite enormous.

(Bruner, 1966, p. 12.)

We do not have the data to link mathematical activity in a one-one mapping to
neurophysical phenomena, steps in this direction (eg DeHaene, 1997) are still in
their early stages. However, the underlying biological basis of mathematical thinking
in a brain ill-built for numerical computation and formal logic, is a vital
underpinning for our own reflections on how mathematical thinking develops.



c. What does the theory claim? What terms are used and what do they mean?

The notion of procept (as given in Gray & Tall, 1994) is seminal in what follows.
An elementary procept is the amalgam of three components: a process which produces
a mathematical object, and a symbol which is used to represent either process or object.
… A procept consists of a collection of elementary procepts which have the same
object. (Gray & Tall, 1994, page 121).

We follow Davis (1983, p. 257) in defining a procedure as an explicit step-by-step
algorithm for implementing a process and see a spectrum of increasing power
through the usage of procedure, process and procept. We do not agree with Sfard or
Dubinsky that the development invariably proceeds in a sequence we describe as
procedure-process-procept. In particular, as students become more sophisticated,
they may sense an intuitive holistic grasp of the overall ideas in, say, an embodied
mode before concerning themselves with the specific procedures that may be seen to
occupy a particular role within a symbolic or formal mode of operation.

We do not have a theory that tells us how all individuals can be helped to move
through all of these modes. (Indeed, no-one has such a theory at this moment in
time.) Instead, in the growth of symbols, we find a bifurcation between those who
concentrate more on the procedures associated with symbols, who have a greater
cognitive strain to overcome, and those who develop a proceptual system switching
flexibly between process and concept to construct a more powerful generative mental
structure. This does not mean that students necessarily remain in a fixed part of the
spectrum. However, we do have considerable evidence that there is a bifurcation in
performance between those who remain entrenched in procedures and those who
develop more flexible proceptual thinking, so that progress to greater sophistication
is more difficult for some and easier for others.

d. What are the aims of the theory and what are its applications?

The initial aim of our theory of the proceptual growth of symbols is to try to explain
why some students are so highly successful with symbols, whilst others are
procedural at best and could, at worst, be overwhelmed by the complexity of
mathematics. To move towards this overall goal we focus on the different ways that
procepts arise in cognitive development. These include

(1) arithmetic procepts, 5+4, 3¥4, 12 2
3+ , 1·54÷2·3, all have built-in algorithms to obtain

an answer. They are computational, both as processes and even as concepts.
Fractional procepts behave differently because the focus moves from sharing
procedures (eg divide into 4 equal parts and take 2) to equivalent fractions, which
from our viewpoint are seen as processes that have the same effect (divide into 4
equal parts and take 2, has the same effect as divide into 6 equal parts and take 3).

(2) algebraic procepts, e.g. 2+3x, can only be evaluated if the value of x is known and
so involves only a potential process (of numerical substitution) and yet the
algebraic expressions themselves represent manipulable concepts (manipulated
using algebraic rules of equivalence).



(3) implicit procepts, such as the powers x 1
2, x0 or x-1 , for which the original meaning

of xn no longer applies but the properties need to be deduced using the power law
x x xm n m n¥ = + ( which also no longer has its original meaning!)

(4) limit procepts, lim
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operational algorithms of computation (the rules for differentiation and integration).

This reveals that each of new form of procept has its own peculiar difficulties that
makes abstraction qualitatively different in each case. We believe that knowledge of
these specific difficulties is essential to help a wider spectrum of students to succeed
in the longer-term process of successive abstractions.

e. How has the theory been validated?

Our data (summarized in Tall, Gray, et al, 2001) reveals both general themes and
specific information on cases (1)-(5) above. The general themes illustrate diverging
approaches from procedural to proceptual in a spectrum of students from elementary
arithmetic (Gray & Tall, 1994), through algebra (DeMarois, 1998; McGowen, 1998;
Crowley, 1999), symbolic calculus (Ali, 1996), and on to formal mathematical
theory (Pinto, 1998). In addition, qualitative differences in imagery emerge from
different forms of abstraction (Pitta, 1998; Gray & Pitta 1999), leading to differing
levels of success in the longer term, depending on whether children continue to focus
on real-world situations and imagery, or move on to a more flexible proceptual
hierarchy (Gray et al, 1999). The data from the above-mentioned studies reveal how
differing contexts pose significantly different kinds of cognitive problems in both
the nature of the procepts concerned and the procedure-process-procept spectrum of
student activity. We believe that these difficulties are best handled by the learner
supported by a mentor who is aware not only of the mathematics but of the
underlying cognitive structures.

This aspect of learning is complementary to the desire of Dreyfus et al (this forum)
to theorize about a general strategy for encouraging abstraction in context. We
suggest that it is a laudable aim to have a general theory of construction, but we
observe that specifics often overwhelm the broad sweep of such a theory. From the
learner’s point of view, different obstacles occur in different contexts. The
acquisition of mathematical knowledge from early years to undergraduate level
involves a variety of reconstructions. Each new reconstruction refines that which was
established earlier so that effective reconstructions contribute to the organic nature of
growth in the embodied and proceptual modes of operation and on to a close
harmony between wider aspects of concept image and concept definition in advanced
mathematical thinking. Our central concern is not just how we can encourage
students to make abstractions, but also to find why some students succeed so



effortlessly and others can fail so badly at making the necessary reconstructions. Our
empirical evidence provides an insight into a possible answer—inappropriate
abstraction from mathematical activity.
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